Retinoblastoma protein contains a C-terminal motif that targets it for phosphorylation by cyclin-cdk complexes.

نویسندگان

  • P D Adams
  • X Li
  • W R Sellers
  • K B Baker
  • X Leng
  • J W Harper
  • Y Taya
  • W G Kaelin
چکیده

Stable association of certain proteins, such as E2F1 and p21, with cyclin-cdk2 complexes is dependent upon a conserved cyclin-cdk2 binding motif that contains the core sequence ZRXL, where Z and X are usually basic. In vitro phosphorylation of the retinoblastoma tumor suppressor protein, pRB, by cyclin A-cdk2 and cyclin E-cdk2 was inhibited by a short peptide spanning the cyclin-cdk2 binding motif present in E2F1. Examination of the pRB C terminus revealed that it contained sequence elements related to ZRXL. Site-directed mutagenesis of one of these sequences, beginning at residue 870, impaired the phosphorylation of pRB in vitro. A synthetic peptide spanning this sequence also inhibited the phosphorylation of pRB in vitro. pRB C-terminal truncation mutants lacking this sequence were hypophosphorylated in vitro and in vivo despite the presence of intact cyclin-cdk phosphoacceptor sites. Phosphorylation of such mutants was restored by fusion to the ZRXL-like motif derived from pRB or to the ZRXL motifs from E2F1 or p21. Phospho-site-specific antibodies revealed that certain phosphoacceptor sites strictly required a C-terminal ZRXL motif whereas at least one site did not. Furthermore, this residual phosphorylation was sufficient to inactivate pRB in vivo, implying that there are additional mechanisms for directing cyclin-cdk complexes to pRB. Thus, the C terminus of pRB contains a cyclin-cdk interaction motif of the type found in E2F1 and p21 that enables it to be recognized and phosphorylated by cyclin-cdk complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gi Cyclins Control the Retinoblastoma Gene Product Growth Regulation Activity via Upstream Mechanisms1

Inactivation of the retinoblastoma gene produd (pRb) occurs concomitant with the appearance of its hyperphosphorylated form in mid to late G1 . Multiple cyclin/CDK complexes are implicated in the cell cycle phosphorylation of pRb. Using in vivo expression systems, we show that cyclins A, E, , D2, and D3 each function to phosphorylate and inactivate pRb. In vivo, Gi cyclin/kinase complexes enhan...

متن کامل

A cyclin D1/cyclin-dependent kinase 4 binding site within the C domain of the retinoblastoma protein.

Phosphorylation of the retinoblastoma protein (Rb) by the cyclin D1/cyclin-dependent kinase (cdk) 4 complex (cdk4/D1) is a key regulatory step for maintaining the orderly progression of the cell cycle. The B domain of Rb contains a site that recognizes and binds the LXCXE motif found in D-type cyclins. This interaction is important for phosphorylation of Rb by cdk4/D1, although in vitro the Rb ...

متن کامل

Direct inhibition of G(1) cdk kinase activity by MyoD promotes myoblast cell cycle withdrawal and terminal differentiation.

MyoD has been proposed to facilitate terminal myoblast differentiation by binding to and inhibiting phosphorylation of the retinoblastoma protein (pRb). Here we show that MyoD can interact with cyclin-dependent kinase 4 (cdk4) through a conserved 15 amino acid (aa) domain in the C-terminus of MyoD. MyoD, its C-terminus lacking the basic helix-loop-helix (bHLH) domain, or the 15 aa cdk4-binding ...

متن کامل

Identification of a substrate-targeting domain in cyclin E necessary for phosphorylation of the retinoblastoma protein.

Considerable advances have been made in characterizing the cyclins and cyclin-dependent kinases (CDKs) that are necessary for progression through the cell cycle, but there has been relatively lesser success in identifying the specific biochemical pathways and cell cycle events that are directly under CDK control. To identify physiologically significant CDK substrates we generated mutations in c...

متن کامل

Involvement of retinoblastoma family members and E2F/DP complexes in the death of neurons evoked by DNA damage.

Neuronal death evoked by DNA damage requires cyclin-dependent kinase 4 (Cdk4) and 6 activity and is accompanied by elevation of cyclin D1-associated kinase activity. Because Cdk4/6 phosphorylates retinoblastoma protein (pRb) family members that then modulate the transcriptional activity of E2F/DP1 complexes, we examined the involvement of these components in DNA damage-evoked neuronal death. Ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 19 2  شماره 

صفحات  -

تاریخ انتشار 1999